A quick tutorial to get started with ORCHESTRA

Hans Meeussen 17/4/2024

This document describes how to get started with performing chemical equilibrium calculations with ORCHESTRA.

- 1) Make sure that you have a Java virtual machine installed on your machine (available for free from https://openjdk.org/ or https://www.graalvm.org/)
- 2) Download the complete self-contained zipped folder with ORCHESTRA executable, database and input files from: www.meeussen.nl/orchestra/getstarted.zip
- 3) Unzip this folder on your machine and (under Windows) click the runorchestra.bat file or from a command window/console opened in this folder give the command: java -cp orchestra2024.jar orchestra2.composer under Linux or MacOS

4) This will start up the orchestra composer

5) In the chemistry editor define you system by selecting substances from the thermodynamic database (in this case Pb)

🗟 ORCHESTRA-Composer (Running on Windows 10 with 21.0.2 Oracle Corporation, using 24 processing cores) -									×						
<u>F</u> ile <u>R</u> u	ın <u>T</u> ools <u>H</u> elp														
chemistry1.inp Read									Write GUI		GUI View	Docun	ntro nentation		
Prima	Primary entities/ Master Species Phases & Reactions Variables Adsorption							Activity	correction	Settings	Predominance Diagra	m Output selector		Che	mistry
Selec	table Primar	/ Entiti	es/ Master S	pecies i	n Dat	tabase								0	utout
tot	diss min a	26												Co	ncert
	(133 IIIII 9	43	1.3					-	nclude		Database				
RI	AP		<u>^</u>						✓ t	nermochimie*	11a.dat		_		
J K	ВРа								<u> </u>	us or priorit.or					
	C Pa[+4]		-												
ZN	E Pa[+5]														
N	F PD														
C	G Pa														
P	H Finnanan		-												
Selec	ted Primary	Entities	/ Master Spe	ecies											
Incl.	Primary entity	Phase	Input variable	Fix log a	ctivity	Log activity	Concentration	Phas	se	Exp	ression				
	CI	tot					0.1	tot							
	E	tot	pe	V	-	-7.0			E.loga	ict = -pe					
V	Na	tot	pri			-0.0	0.1	tot	n.ioga	ici – -pri					
	0	tot	H2O.logact	V	C	0.0			O.loga	ct = H2O.log	gact				
							Balance Cha	arge pe							
No in put i	Ele es disentem es	le ete d			-										

No input file or directory selec

📓 ORCHESTRA-Composer (Running on Windows 10 with 21.0.2 Oracle Corporation, using 24 processing cores) —										- 🗆 X
Tine Kruu Toola Helb										Intro
chemistry1.inp Read Write GUI View C										Documentation
Primary entities/ Master Species Phase	& Reactions Varia	bles Adso	orption models	Activity corr	ection Settings	Predomin	ance Diagram	Output selector		Chemistry
Selectable Primary Entities/ Mast	Selectable Primary Entities/ Master Species in Database									Output
		lubuoo								Concert
tot diss min gas			Include		Da	atabase				Concort
R I A P				thermochin	nie11a.dat					
S K B Pa				adsorption	DAT					
L C Pa[+4]										
7 M E Pa[+5]										
N F Pd										
O G Phthalat										
РНРи										
			_							
Selected Primary Entities/ Maste	Species									
Incl. Primary entity Phase Input va	iable Fix log activity	Log activity	Concentration	Phase	Exp	pression				
CI tot			0.1	tot						
E tot pe		-7.0			E.logact = -pe					
Na tot		-0.0	0 1	tot	nnogact – -pri					
✓ O tot H2O.loga	t 🖌	0.0			O.logact = H2O.lo	gact				
Pb tot			0.1	tot						
		📃 Bala	ance Charge p	е	-					
										d

- 6) Lead (Pb) will appear in the list of selected primary entities (also called Master species or independent components in other codes).
- 7) For this Pb primary entity we can select either a given log activity or a given amount or "mass balance" in any of the phases in the system. Here we select a given total amount, so Pb.tot in "tot" phase (total amount) and not a fixed log activity.
- 8) Under the phases & reactions tab we can now see all the possible lead reactions that can be selected from the selected set of primary entities to be included in the chemical system. By default all dissolved species are automatically selected, but mineral phases have to be specifically selected.

ile Run Tools Help										
ne Rui Toola Teib										Intro
hemistry1.inp		Read			Write			GUI View		Documentati
Primany antitias/ Master Species Phases & Page	settings	Predominance Diag	ram Output	elector			Chemistry			
Finally entities/ Master apecies Finales & Reac	ions variables	Adsorption models	Activity corre	settings	Predominance Diag	ram Output	selector			Input
Phase Hierarchy and Entities										Output
Reactions in all phases			-					- Alexandreal Id		Output2
♀ □ tot (1)	Pormation reaction	ns in phase: all	, c	epending on prim	ary entity: PD 🔹 ar		Hide unselected	Alphabetical	Select all li	Output3
P □ liter (watervolume)	Inel	blama		an K (250)	Dhase	1		Reastant	Cont	Concert
P Solution (1)	Inci.	Cotuppito[s]	4 9100	00 r (25C)	Pridse	2.0	I. CL	1.0	Coel.	
- 🗋 diss (1)		Laurionite[s]	-6 2000	00e-1 r	nin	1.0	CI-	-1.0		
- Colloid (1)	v	Litherge[s]	-12 630	00 1	nin	-2.0	H	1.0		
DHA part (1)	V	Massicot[s]	-12.740	00 r	nin	-2.0	H+	1.0		
HA part (DHA kal)	~	Minium[s]	-73.530	00 r	nin	-8.0	H+	4.0		
DEA part (1)		Paralaurionite[s]	-6,2000	00e-1 r	nin	1.0	CI-	-1.0		
	~	Pb+2	0.0	0	iss	1.0	Pb			
- PA_part (DFA_kgi)	v	Pb2[OH]+3	-7.1800	00 0	iss	-1.0	H+	1.0		
solid (1)	¥	Pb4[OH]4+4	-20.630	00 00	iss	-4.0	H+	4.0		
— _) min (1)	v	Pb6[OH]8+4	-42.680	00 0	iss	-8.0	H+	8.0		
• □ ads (1)	~	PbCl+	1.4400	00 0	iss	1.0	CI-	1.0		
CLAY_part_I (1)	~	PbCl2	2.0000	00 0	iss	2.0	CI-	1.0		
CLAY_part (CLAY_kgkg'	~	PbCl3-	1.6900	00 c	iss	3.0	CI-	1.0		
■ I HFO part I (1)	v	PbCl4-2	1.4000	00 c	iss	4.0	CI-	1.0		
HEO part (HEO koko*S	<u> </u>	Pb[OH]+	-7.5100	00 0	iss	-1.0	H+	1.0		
C C Casthile part ((1)	V	Pb[OH]2	-16.950	00 00	ISS	-2.0	H+	2.0		
Y Goetnite_part_i (1)		Pb[OH]2[s]	-13.510	00 r	nin	-2.0	H+	2.0		
Goetnite_part (Goetnite_		Pb[OH]3-	-27.200	00 0	155	-3.0	H+	3.0		
SHA_part_I (1)	P	Pb[UH]4-2	-38.900	00 0	155	1.0	Db. 2	4.0		
HA_part (SHA_kgkg*SL)		Plattnerite[s]	-4.2500	00 1	ain	-4.0	H+	2.0		
SFA_part_I (1)	<u> </u>	Flatthente[a]	1.40.000			-4.0	111	4.0		
FA_part (SFA_kgkg*SL)										
exchange (1)										
	(•	

9) Next we can define our (set of) input conditions in the input file. This can be single or multiple datapoints. The values given here overrule the default values given within the chemistry file. So here you can give a list of concentrations for Cl, Na or Pb. The values of Pb.tot, Na.tot and Cl.tot given here will overrule the values given in the graphical user interface.

Marchestra-Composer (Running on Windows 10 v	with 21.0.2 Oracle Corporation, using 24 processing core	25)		- 🗆 ×
<u>File Run T</u> ools <u>H</u> elp				
input.dat	Read	Write	Text View	Intro Documentation
// Here we define the input for the c	hemical equilibrium calculations.			Chemistry
				Input
// We can give individual data points	as follows:			Output2
				Output3
// A Data: line represent an actual c	alculation with given values of the v	variables		Concert
// A Default: line just sets the defa	ult values of the listed variables			
// The values given here overwrite th	tot Pb tot	chemistry file		
//Data: 293.15 1.0 .1	.1 1e-4			
//Default: 293.15 1.0 .1	.1 1e-4			
Default: 293.15 1.0 .1	.1 1e-1			
// or use a loop to vary input				
//The variables used here should be d	efined above			
<pre>// A Sweep results in a given number</pre>	of data points with the listed variab	les varied from start to end value in	lin or log steps	
Sweep: 21				
Swept: Clitot 01 5 log				
}				
				-
to heave the second second second second				

- 10) Now we can perform the calculation by clicking the "run" button in the GUI.
- 11) When the run is finished, the calculated results will be written to the output text file, which is automatically reloaded.
- 12) In the output file you can define the type of output you want. This can be either an automatic set of variable, similar to PHREEQC.
- 13) So the type of output is actually defined in the output file itself, and this file is read before a run to determine which output needs to be generated.

By Day 1900 Disk Read Write TestWork December 2010 December 2	GRCHESTRA-Comp	poser (Running on Windows 10 with 21.0.2. Oracle Corporation, using 24 proc	essing cores)				- 🗆 ×
builput det Read Wrine Text Wrwet Machine belanse: Format ()	Eile Run Iools He	elp					
<pre>lease: formati() //Origing.fm: (ise, form: 0, to), 10, steps: 100) //Origing.fm: (ise, form: 0, to), 10, steps: 100) //War: Ms.ads Bo.ads Cl.diss Pb-2.con Pb2(00)+3.con Pb4(00)444.con () //War: Ms.ads Bo.ads Cl.diss Pb-2.con Pb2(00)+3.con Pb4(00)444.con () //War: Ms.ads Double Cl.diss Pb-2.con () //War: Ms.ads Double Cl.diss Pb-2.con () //War: Ms.ads Double Cl.diss () //War: Ms.ads () //War: Ms.ads</pre>	output.dat		Read	W	rite	Text View	Documentation
Mar: Bo.dds Cl.diss Pb-2.con Pb2(00]+3.con Pb4(00]444.con A thormat()	<pre>@class: format() //Output_at: @PHREEQCOutput</pre>){ : (time, from:, 0, to:, 10, steps:, 100) ut: chemistry1.inp					Chemistry Input Output Concert
b format() 	//Var: Na.ads	Pb.ads	Cl.diss	Pb+2.con	Pb2[OH]+3.con	Pb4 [OE] 4+4.con	
tronshi	}						
	@format()						
Cellsmater = 0.0		Description of solution					
pr 0.0000000 Activity of water = 1.00000 Total number of iterations = 37.000000 Total number of iterations = 37.000000 Species concentration (MoL/L) Log Activity of water = 1.00000 activity Activity log gamma Cl = 0.9722996-3 - 0.001202 9.9772a-3 0.0 PC1+ 2.95553346 - 3.0874146 2.95958-6 0.0 PC1+ 2.95553346 - 3.081605 9.15359-6 0.0 PC1+ 2.95553346 - 3.081605 9.15359-6 0.0 PC1+ 2.405959-12 - 1.088605 9.415359-6 0.0 PC1+ 2.405959-12 - 1.088605 9.415359-6 0.0 PC1+ 2.405959-12 - 1.088605 9.41536-30 0.0 PC1+ 0.0 -7.00000000 1.00000-7 -1.1111-111 H 1.082605 9.41536-30 0.0 C2 2.17816430-8 0.0 0.0 C3 0.1000000-6 0.0 0.0 C4 0.0770000000 1.00000-7 -1.1111-11 H 1.07816491-1 0.0 C4 0.0074500 6.51010-9 0.0 C5 0.0 0.0 0.0 C4 0.0074500 6.51010-9		Cellnumber = 0.0					
Activity of wate = 1.00000 Inic at rest = 5.0 Total number of iterations = 37.000000		pH = 6.00000000					
Total number of iterations = 0.00000 Total number of iterations = 37.000000		pe = 7.0000000					
Total number of iterations = 37.000000 Olitribution of Aqueous species Olitribution of Aqueous species Species concentration (Mol/1) Log Activity		Ionic strength = 0.0					
Byecies concentration (Mol/1) Log Activity Activity Log gamma Cl 1.00000000-2 0.0 0	Total	1 number of iterations = 37.0000000					
Species concentration (Mol/1) Log Activity Activity log gamma C1 1.00000000-2 0.0 BC1 9.9729990-3 -2.00012032 9.9722a-3 0.0 BC1 2.353503346 -3.50744166 2.365050-6 0.0 BC1 9.17229990-1 -0.0012032 9.9722a-3 0.0 BC1 9.15350030-6 -0.0012039 9.9722a-3 0.0 BC1 9.15350030-6 -0.00120039 9.150500-0 0.0 BC2 9.55150330-0 -2.00745000 8.501500-0 0.0 02 1.71229941-297 0.0 0.0 02 0.0 -0.0000000 1.000000-6 0.0 02 2.17110430-6-3 0.0 0.0 02 2.17110430-6-3 0.0 0.0 02 2.17110430-6 0.0 0.0 02 2.17110420-5 0.0 0.0 02 2.17110420-5 0.0 0.0 02 2.17110420-5 0.0 0.0 03 0.00000000000000000000000000000000000		Distribution of aqueous species					
C1 0.0000000-2 C1- 9.9772990-3 -0.0012012 9.977280-3 0.0 PC14 2.50553346 - 3.5074416 2.58558-6 0.0 PC12 9.1535930-8 -7.0810059 9.153558-0 0.0 PC14 2.50553354 - 3.5074416 2.58558-0 0.0 PC14 2.1525930-8 -7.010202 9.97728-3 0.0 PC14 4.4618006-10 -9.3481029 4.15058-3 0.0 PC14 2.001599-12 -11.08960 9.401508-0 PC14 0.01000000-6 - 0.00000-7 -1.01111e-111 R 1.7222981-39 PC 0.01 -7.00000000-6 - 0.000000-7 -1.1111e-11 PC 0.01 -7.00000000-6 - 0.0000000 1.00000-6 - 0.0 PC 0.01 -7.00000000-6 - 0.0000000 1.00000-7 - 0.11111e-11 PC 0.01 -7.00000000-6 - 0.0000000 1.00000-7 - 0.00 PC 0.01 -7.00000000-6 - 0.000000 1.00000-7 - 0.00 PC 0.01 -7.00000000-6 - 0.0000000 1.00000-7 - 0.00 PC 0.10000000-6 - 0.0000000 1.00000-7 - 0.00 PC 0.10000000-6 - 0.0000000-0 - 0.00000-7 - 0.00	Species	concentration (Mol/1) Log Activity	Activity	og gamma			
C1- 9.99722998-9 -0.0012022 9.997289-3 0.0 PC14 2.95539346-6 -0.3944085 9.957359-6 0.0 PC12 9.135359346-6 -0.384025 9.153595-6 0.0 PC13- 4.461806-01 0.0 PC14-2 2.4051593942-3 0.0 1 1.7229942-39 0.0 02 2.1714400-3 0.6012012.1111-111 1 7.66794146-2 0.0 02 0.1 -7.0000000 0.561508-30 0.0 02 0.1 -7.0000000 0.561508-30 0.0 02 0.1 -7.0000000 0.561508-30 0.0 02 0.1 -7.0000000 0.00000 0.000000 1.000000-0 0.0 03 0.0 0.0 0.0 0.0 04 1.00000000-0 -0.0 0.0 0.0 05 0.11111-11 0.0 0.0 0.0 04 0.00000000000000000000000000000000000	C1	1.00000000e-2					
PC:1 2.5955930-00 -0.30744162 -0.0 PC:12 9.1535930-00 -0.3084059 -0.0 PC:14 4.46618006-01 -9.34812223 4.4661800-01 -0.0 PC:14 2.4051399-02 -1.1689502 4.4051800-01 -0.0 PC:14 2.4051399-02 -1.1689502 4.00 -0.0 PC:14 0.0 -0.000000 -0.000000 -0.000000 -0.000000 -0.000000 02 0.0 -0.0000000-0 -0.000000 -0.000000 -0.000000 -0.000000 -0.0000000 -0.000000 -0.0000000-0 -0.0000000 -0.0000000-0 -0.0000000 -0.0000000 -0.0000000 -0.00000000-0 -0.0000000 -0.00000000-0 <t< td=""><td>C1-</td><td>9.99722999e-3 -2.00012032 9.99723e-3</td><td>0.0</td><td></td><td></td><td></td><td></td></t<>	C1-	9.99722999e-3 -2.00012032 9.99723e-3	0.0				
PC12 9.15359503e-0 7.0346059 9.15359e-0 0.0 PC14-2 2.405159992e-32 9.16429254 0.0 R 1.72259942e-39 0.0 Q2 2.191430b-34 0.0 Q3 0.0 0.0 Q4 0.00000000 1.0000000- 0.0 Q2 2.191430b-34 0.0 0.0 Q4 0.0 -1.11111e-11 0.0 R 1.00000000-0 -0.0000000 1.0000000-0 R4 1.000000000-0 0.000000 0.0 Q4 2.1711430b-34 0.0 0.0 Q5 0.10000000-0 0.000000 0.00 Q6 2.1711430b-34 0.0 0.0 Q6 2.1711430b-34 0.0 0.0 Q6 2.1711430b-34 0.0 0.0 Q72 2.1711430b-34 0.0 0.0 Q6 4.15234469-1 0.0 0.0 P30(01)4 4.15234469-1 0.0 0.0 P30(01)4 4.15234469-1 0.0 0.0 P30(01)4 4	PbC1+	2.58558334e-6 -5.58744146 2.58558e-6	0.0				
PC1-2 4.46518056-10 -9.34812223 4.465180-60 0.0 PC1-4 2.4051398-01 -9.1694500 8.0 R 1.71223981-23 1.8089502 4.9161300-30 0.0 Q2 0.5515038-03 -9.074500 8.561500-30 0.0 Q2 0.70000000-6 -0.0000000 0.000000-7 -1.11110-11 H* 1.0000000-6 -0.0074500 0.0 0.0 Q2 0.551508-00 0.0 0.0 0.0 Q3 0.2170164300-7 -1.11110-11 1 H* 1.00000000-6 -0.0 0.0 Q2 2.170164300-7 0.0 0.0 Q3 2.170164300-7 0.0 0.0 Q4 1.67316490-7 0.0 0.0 P5(Q1)+3 6.182463590-1 0.0 0.0 P5(Q1)+4 1.67316490-7 0.0 P5(Q1)+1 P5(Q1)+1 2.0537032.0.00280-7 0.0 P5(Q1)+1 P5(Q1)+1 2.05673702.0.02808-7 0.0 P5(Q1)+1	PbC12	9.15358903e-8 -7.03840859 9.15359e-8	0.0				
PRC1-2 2.403159991-2 0.0 1.72259910-29 0.0 R2 0.56150338-0 -29.0674000 6.56150-0 0.0 02 2.17114030-0.4 0.0 0.0 e 0.0 -7.00000000 1.00000-7 -1.11111-111 B4 1.00000000-6 -6.000000 1.00000-7 -1.11111-111 B4 1.00000000-6 -6.000000 1.00000-7 -1.11111-111 B4 1.00000000-6 -6.000000 1.00000-7 -1.1111-111 B4 1.000000000-1.000000-7 0.0 B2 0.551388-50 -9.074500 8.51308-50 0.0 C0 2.171140450-45 -5.0613012 2.179118-56 0.0 C0 2.171140450-7 -0.000370 6.11208-75 0.0 C0 2.171140450-7 -0.000370 6.11208-75 0.0 C0 2.171140450-7 -0.000370 6.11208-75 0.0 C1 1.15721460-1 1.15721460-1 0.0 C1 2.00227715-550452-2 0.0 C1 2.00227715-550452-2 0.0 C1	PbC13-	4.48618806e-10 -9.34812252 4.48619e-10	0.0				
Image: Section 1 - 10.267476 - 10.4000 - 10.000-0 - 1.1111e-11 Image: Section 1 - 10.0000-0 - 1.1111e-11 Image: Section 1 - 10.00000-0 - 1.00000-0 - 0.00 Image: Section 1 - 10.000000-0 - 1.00000-0 - 0.00 Image: Section 1 - 10.000000-0 - 1.00000-0 - 0.00 Image: Section 1 - 10.000000-0 - 1.00000-0 - 0.00 Image: Section 1 - 10.000000-0 - 1.00000-0 - 0.00 Image: Section 1 - 10.0000000-0 - 1.00000-0 - 0.00 Image: Section 1 - 10.0000000-0 - 1.00000-0 - 0.00 Image: Section 1 - 10.0000000-0 - 1.000000-0 - 0.00 Image: Section 1 - 10.0000000-0 - 1.000000-0 - 0.00 Image: Section 1 - 10.0000000-0 - 1.000000-0 - 0.00 Image: Section 1 - 10.0000000-0 - 1.0000000-0 - 0.00 Image: Section 1 - 10.0000000-0 - 1.0000000-0 - 0.00 Image: Section 1 - 10.0000000-0 - 0.00 Image: Section 1 - 10.0000000-0 - 0.000000000000000000	PbC14-2	2.40515999e-12 -11.6188560 2.40516e-12	0.0				
R2 0.36150336-0 -29.0674000 8.56120-30 0.0 Q2 2.1710430-0-4 3.612012 2.171010-14 0.0 e- 0.0 -7.0000000 1.00000-7 -1.11111-11 H 7.66793546-7 0.0 B4 1.00000000-6 -6.0000000 1.00000-7 0.0 B2 0.515338-0 -9.074500 8.5150-30 0.0 C0 2.1710130-0 -9.0674500 8.5150-30 0.0 C0 2.1710130-0 -35.669321 2.17112-0 0.0 C0 2.1710120-0 -35.069321 2.17112-0 0.0 C0 2.1710120-0 -35.069321 2.17112-0 0.0 C0 2.1710120-0 -35.069321 2.17112-0 0.0 C0 2.1710120-0 -35.009370 6.120820-7 0.0 C0 2.00287716-7 -4.0533703 2.00230-7 0.0 FN(01]+4 1.15734640-17 -1.0526727 5.350856-26 0.0 FN(01]+5 2.00287716-7 -0.0 FN(01]+2 3.1237412-21 0.0 FN(01]+2 3.1237412-21 0.0 Nat 9.30489526-3 0.0 Nat 9.30489526-3 0.0 Nat 9.30489526-3 0.0 Nat 9.30489526-3 0.0 Nat	E	1.71229981e-29					
02 2.17014340=34 -35.643/921 2.17010=-34 0.0 e= 7.660 -0.000000-1 -1.1111=-11 N 7.660 -0.000000-1 0.00 02 2.17016340=-4 -0.0 02 2.17016340=-3 -35.6613921 2.17010e-36 0.0 03 0.17016340=-1 -0.0 760(01) -6.18246339=-1 0.0 760(01) -6.18246330=-1 0.0 784(01) 1.05350231-2 0.0 784(01) -6.18246330=-1 0.0 784(01) 1.05350231-2 0.0 784(01) 1.05350231-2 0.0 784(01) 1.05350231-2 0.0 784(01) 1.05350231-2 0.0 784(01) 1.05267278-7 -6.083703-2 78(01) 2.5356436=1 -0.026778-7 78(01) 2.5356436=1 -0.026778-7 78(01) 2.1371978-7 -0.0 78(01) 2.1371978-7 -0.0 78(01) 2.1371978-7 -0.0 78(01) 2.1371978-7 -0.0 78(01)	H2	8.56150338e-30 -29.0674500 8.56150e-30	0.0				
e 0.3 -7.0000000 1.000000-7 -1.1111E-11 H 7.867981546-7 0.000000-0 0.00000-0 0.000000-0 0.000000000 0.00000000000000000000000000000000000	02	2.178104306-36 -35.6619213 2.178106-36	0.0				
B 1.00000000-6 -0.00000001-0 0.0 B2 0.0000000-6 0.0 B2 0.0000000-6 0.0 02 2.17810430-3 -3.0014500 1.5018-0 0.0 03 0.01782-0 -3.0014500 1.5018-0 0.0 04 0.01782-0 -3.0014500 1.5118-0 0.0 720 2.17810430-2 -3.001400 1.50000 0.0 720 0.18240330-21 -11.2008370 6.18240-2 0.0 726(03)+4 1.6734050-21 -11.2008370 6.18240-2 0.0 726(03)+4 1.6734050-21 -10.2008370 1.000280-7 0.0 726(03)+4 1.6734050-71 0.0 70.0 726(03)+2 -3.3008060 4.563562-26 0.0 70(03) 2.3534082-1 0.0 70.0 720(03)+3 0.5536230 2.00280-7 0.0 70(03)+2 3.139748-2 0.0 70(03)+2 3.139748-2 0.0 70(03)+2 3.139748-2 0.0 70 2.1314090-36 0.0 70<	e-	0.0 -7.00000000 1.00000e-7 -1.11.	111e-111				
B2 8.55153318-0 -29.074500 8.5513030 0.0 02 2.175143036 0.0 03- 6.81112782-9 -6.551921 2.1798036 0.0 03- 6.81112782-9 -1.6670037 6.81128-9 0.0 04- 6.81112782-9 -1.0670037 6.81128-9 0.0 752/031-5 6.85359-12 0.0 754/031-84 1.1673469-17 -16.929121.1147018-12 0.0 754/031-84 4.55359-12 0.0 754/031-94 4.55359-12 0.0 754/031-94 4.55359-12 0.0 754/031-94 4.55359-12 0.0 751/031-9 2.48701763-15 -14.604321 2.497028-15 0.0 751/031-9 2.48701763-15 -14.604321 2.497028-15 0.0 751/031-9 3.12674729-12 0.0 751/031-9 -3.0312898 9.3048952-3 0.0 70 3.132048520-3 -0.0 70 3.132048520-3 0.0 70 3.132048520-3 0.0 70 3.132048520-3 0.0	Ha	1 00000000-6 -6 00000000 1 00000-6	0.0				
02 2.17014400-54 -35.6419212.217010-36 0.0 03 6.8171782-9 -9.1670075 6.1113-9 0.0 720 720 7301782-9 -9.1670075 6.1113-9 0.0 720 721 6.112782-9 -9.1670075 6.1113-9 0.0 720 721 6.1120840570-12 -11.2008070 6.112420-12 0.0 726 721 721.200817-3 6.10520221 11.07111-17 0.0 726 721.5050232-2 -2.3406960 4.563562-26 0.0 0.0 721.07115-10 0.0 720 721.505070-2 0.0 0.0 721.0715-8-10 0.0 720 721.505070-2 0.0 0.0 721.0715-8-10 0.0 720 721.507412-0 -0.05449215-1 0.027072-15 0.0 721.0715-8-10 0.0 720 721.7214100-54 0.0 721.0715-8-10 0.0 721.0715-8-10 0.0 70 721.7214100-54 0.0 721.071540-5 0.0 721.071540-5 0.0	H2	8,56150338e-30 -29,0674500 8,56150e-30	0.0				
0E- 6.81112702-9 -0.62707 0.0 7b2(0E) 6.1924059-12 1.008370-12 0.0 7b4(0E) 1.16734669-17 -16.920122 1.00870 7b5(0E) 4.55251-26 0.0 7b5(0E) 2.06287786-7 0.0 7b5(0E) 2.06287786-7 0.0 7b5(0E) 2.0528778-7 0.0 7b5(0E) 2.0528778-7 0.0 7b5(0E) 2.0528778-7 0.0 7b5(0E) 2.0528778-7 0.0 7b5(0E) 3.0527875-5 0.0 7b5(0E) 3.0527875-5 0.0 7b5(0E) 3.0527875-5 0.0 7b5(0E) 3.0278755-7 0.0 7b5(0E) 3.0278755-7 0.0 7b5(0E) 3.02487250-3 0.0 7b5(0E) 3.02487250-3 0.0 7b5(0E) 3.02488250-3 0.0 7b5(0E) 3.02488250-3 0.0 7b5(0E) 3.02488250-3 0.0 7b5(0E) 3.02488250-3	02	2.17810430e-36 -35.6619213 2.17810e-36	0.0				
Ph2 (02) + 3 6.18248359-12 -11.2088370 6.18248539-12 0.0 Ph4 (03) 44 1.6731458-17 1.6.093111 0.0 Ph5 (03) +4 1.65356232-6 2.3002606 1.6357023.202827 0.0 Ph5 (03) +4 2.65356232-6 0.0 1.67276 1.6404311 2.47070-15 0.0 Ph5 (03) +2 3.1537412-0 0.0 1.60111 1.6028776-7 1.6404311 2.47070-15 0.0 Ph5 (03) +2 3.1537412-0 0.00 1.61111 1.6404311 2.47070-15 0.0 Ph5 (03) +2 3.1537412-0 0.0544913 1.102870-15 0.0 Ph5 (03) +2 3.1537412-0 0.0544913 1.102870-15 0.0 Na + 9 9.2084925-0 -0.044912 0.0 Na + 9 9.2084925-0 0.0 1.00111 0 2.132109356-7 0.0 1.00111 1.00111 0 2.13210936-7 0.0 1.00111 1.00111	OH-	6.81112782e-9 -8.16678097 6.81113e-9	0.0				
Phe (001) 4-4 1.16731460-17 -16.9320121 1.16731-17 0.0 Phe (001) 4-4 4.555254-26 0.0 Phe (001) 4-2 0.002807780-7 6.0033703 0.00 Pho (001) 2 0.5564956-11 0.0 Pho (001) 2 0.5564956-11 0.0 Pho (001) 2 0.26927780-530560-11 0.0 Pho (001) 2 0.2692787-50-726 0.0 Pho (001) 2 0.2692787-50-726 0.0 Pho (011) 2 0.2692787-50-726 0.0 Pho (012) 2 0.2692787-50-726 0.0 Pho (012) 2 0.269278-73 0.0 Pho (012) 2 0.204892260-3 0.0 Na + 9.304895260-3 0.0 0 2.33208956-7 0.0 0 2.33208956-7 0.0	Pb2[OH]+3	6.18248359e-12 -11.2088370 6.18248e-12	0.0				
Pbc (001) 8+4 4.56356233-e-2e 0.0 Pb (001) + 2.082778-7 -6.053703 2.02828-7 0.0 Pb (001) - 2.55569436-11 -0.028778-7 -0.01 Pb (001) - 2.4707163-15 -1.04287278-7 -0.01 Pb (001) - 2.4707163-15 -1.04287278-7 -0.01 Pb (001) - 2.4707163-15 -1.0128728-7 0.0 Pb (001) - 2.4707163-15 -1.0128728-7 0.0 Pb (001) - 2.12074128-15 0.0 -1.01287289 -1.01287289 Na + 3.0807356-7 -0.01 -1.01287289 0.0 -1.01287289 -1.01287289 0 2.13210936-7 -0.01 -1.01287289 0.0 -1.0128789 -1.0128789 0 2.13210936-7 -0.01 -1.0128789 0.0 -1.0128789 -1.0128789 -1.0128789 -1.0128789 0 2.13210936-7 -0.01 -1.0128789 0.0 -1.0128789 -1.0128789 -1.0128789 -1.0128789 -1.0128789 -1.01287889 -1.01287889 -1.01287889<	Pb4 [OH] 4+4	1.16731469e-17 -16.9328121 1.16731e-17	0.0				
Pho(01)+ 2.062827780-7 -6.6553703 2.062830-7 0.0 Pho(01)2 5.3569456-11 0.0 Pho(01)3 2.447017450-15 -14.604321 2.447020-15 0.0 Pho(01)4 3.12974120-21 20.054431 2.31297402-15 0.0 Na 9.30449520-3 -0.0312898 9.304892-3 0.0 Na 9.30449520-4 0.0 0 O 2.13210936-7 -0.0312898 9.304892-3 0.0	Pb6[OH]8+4	4.56356253e-26 -25.3406960 4.56356e-26	0.0				
Pb(0B)2 5.35696436e-11 -0.2567267 5.35698-11 0.0 Pb(0B)3 2.48701768-15 -1.6043211.2.417020-15 0.0 Pb(0B)4-2 3.12974412e-21 -0.05045912.3.12974e-21 0.0 Na 9.30489520e-3 0.0 Na+ 9.30489520e-3 0.0 0 2.33210836e-7 0.0 02 -2.33210836e-3 0.0	Pb[OH]+	2.06282778e-7 -6.68553703 2.06283e-7	0.0				
Pho(1913- 2.487017/53-015 -14.60432112.487028-15 0.0 Pho(1914-2 3.12374128-21 -0.0544123 3.1247842-21 0.0 Na 9.30485526-3 0.0 0.0 0.0 0.0 Na 9.30485526-3 0.0	Pb[OH]2	5.53698436e-11 -10.2567267 5.53698e-11	0.0				
Pb(D08]4-2 3.12374412e-21 -20.5044912 3.12974e-21 0.0 Na 9.3048952b-3 0.0 Na+ 9.3048952b-3 0.0 0 2.13210936e-7 0.0 0 2.13210936e-7 0.0 0 2.13210936e-7 0.0	Pb[OH]3-	2.48701763e-15 -14.6043211 2.48702e-15	0.0				
Na 9.30486220-3 0.01 Sta+ 9.3048520-3 0.0 0 2.3210836-7 0.0 -0 2.3210836-7 0.0	Pb[OH]4-2	3.12974412e-21 -20.5044912 3.12974e-21	0.0				
Na* 9.304695200-5 -2.03128036 - 7 0.0 0 2.132108360-7 0.0 - -0	Na	9.30488525e-3					
0 2.13210506-77 02 2.138104306-36 -33.6613213.2.138106-36 0.0	Na+	9.30488525e-3 -2.03128898 9.30489e-3	0.0				
	02	2.132108366-7	0.0				-
	4	1	10.000			•	

14) Or you can ask for individual variables by writing them in the column headers, and re-run the model

GR ORC	📓 ØRCHESTRA-Composer (Running on Windows 10 with 21.0.2 Oracle Corporation, using 24 processing cores) – 🛛 🗙									
Eile Bu	in <u>T</u> ools <u>H</u> elp									
outpu	output.dat Read				Vrite	Text View	Intro Documentation			
8class // //8	: format() { Output_at: (time, from:, PHREEQCOutput: chemistry	0, to:, 10, steps:, 100) 1.inp					Chemistry Input Output Concert			
Var:	Na.ads	Pb.ads	Cl.diss	Pb+2.con	Pb2[OE]+3.con	Pb4[OE]4+4.con	x			
}							1			
<pre>@forma</pre>	t()									
// The	column headers in this	file can be edited and determine	the output for the next run.							
Var:	Na.ads	Pb.ads	Cl.diss	Pb+2.con	Pb2[OH]+3.con	Pb4[OH]4+4.con	x			
Data:	6.95114746e-4	8.74426271e-5	1.0000000e-2	9.67345211e-6	6.18248359c-12	1.16731469e-17	4			
Data:	6.96666625e-4	8.66666875e-5	1.03156085e-2	1.02001377e-5	6.87404018e-12	1.44306581e-17				
Data:	6.98294786e-4	8.58526071e-5	1.06411778e-2	1.07460733e-5	7.62956182e-12	1.77771116e-17	e			
Data:	7.00000994e-4	8,49995031e-5	1.09770224e-2	1.13110480e-5	8.45289914e-12	2.18209362e-17	2			
Data:	7.01786849e-4	8.41065757e-5	1.13234665e-2	1.18947453e-5	9.34781905e-12	2.66859458e-17	1			
Data:	7.03653761e-4	8.317311966-5	1.16808447e-2	1.24967376e-5	1.03179472e-11	3.251236838-17				
Data	7.05602931e-4	8.219853476-5	1.20495021e-2	1.31164795e-5	1.13667045e-11	3.94576432#-17	3			
Data:	7.07635325e-4	8.118233748-5	1.24297945e-2	1.37533033#-5	1.24972381e-11	4.76968933#-17	3			
Data	7.09751657e-4	8.012417138-5	1.282208948-2	1.440641476-5	1.37123479e-11	5.74229704e-17	2			
Data	7.119523648-4	7.902381828-5	1.32267654e=2	1 507488888-5	1.50144087e-11	6.88459619e-17	2			
Data	7 142375848-4	7 788120798-5	1 364421338-2	1 575766808-5	1 640528926-11	8 219204558-17	2			
Data	7 166071440-4	7 669642790-5	1 407483630-2	1 645356050-5	1 788627010-11	9.770157710-17	1			
Data:	7 19060535e-4	7 546973278-5	1 451905000-2	1 716123998-5	1.94579608e-11	1 15626307e-16	1			
Data	7.2150600000-4	7.420155220-5	1.407729250-2	1 797924620-5	2 112021860-11	1.362056200-16	1			
Data:	7.213966968-4	7.420135228-5	1.497720336-2	1.707924628-3	2.112021008-11	1.362236308-16	1			
Data	7.242130036-4	7.209249006-5	1.544557526-2	1.000390008-5	2.207207016-11	1.057616036-16	1			
Data:	7.269132346-4	7.134337316-3	1.593759376-2	1.933974616-5	2.4/1103028-11	1.004940936-10	1			
Data:	7.296896386-4	7.015517096-5	1.644039766-2	2.007667636-5	2.663607608-11	2.166/18326-16				
Data:	7.325418286-4	6.872908596-5	1.695947686-2	2.082082596-5	2.86415096e-11	2.505265836-16	1			
Data:	7.354669756-4	6.726651266-5	1.749473236-2	2.15641210e-5	3.072299286-11	2.88263095e-16				
Data:	7.384619046-4	6.576904796-5	1.804688086-2	2.230639606-5	3.28/44/42e-11	3.300499236-16	3			
Data:	7.41523018e-4	6.42384908e-5	1.86164557e-2	2.30453937e-5	3.50887795e-11	3.760092526-16	5			
Data:	7.44646319e-4	6.26768405e-5	1.92040068e-2	2.37787790e-5	3.73576116e-11	4.26206638e-16	3			
Data:	7.47827413e-4	6.10862934e-5	1.98101015e-2	2.45041521e-5	3.96715673e-11	4.80640896e-16	3			
Data:	7.51061525e-4	5.94692373e-5	2.04353251e-2	2.52190620e-5	4.20201752e-11	5.39234564e-16	3			
Data:	7.54343510e-4	5.78282450e-5	2.10802812e-2	2.59210223e-5	4.43919530e-11	6.01825393e-16	1			
Data:	7.57667869e-4	5.61660653e-5	2.17455928e-2	2.66075269e-5	4.67744857e-11	6.68159346e-16	1			
Data:	7.61028776e-4	5.44856121e-5	2.24319021e-2	2.72760672e-5	4.91545251e-11	7.37885564e-16	4			
Data:	7.64420095e-4	5.27899525e-5	2.31398719e-2	2.79241496e-5	5.15181087e-11	8.10553765e-16	3			
Data:	7.67835417e-4	5.10822914e-5	2.38701859e-2	2.85493137e-5	5.38506989e-11	8.85614447e-16	2			
Data:	7.71268088e-4	4.93659559e-5	2.46235491e-2	2.91491511e-5	5.61373389e-11	9.62422236e-16	3			
Data:	7.74711246e-4	4.76443770e-5	2.54006892e-2	2.97213241e-5	5.83628252e-11	1.04024256e-15	9			
Data:	7.78157862e-4	4.59210692e-5	2.62023565e-2	3.02635845e-5	6.05118920e-11	1.11826175e-15	1			
Data:	7.81600782e-4	4.41996092e-5	2.70293250e-2	3.07737922e-5	6.25694063e-11	1.19560046e-15	1			
Data:	7.85032775e-4	4.24836125e-5	2.78823934e-2	3.12499332e-5	6.45205685e-11	1.27133023e-15	1			
Data:	7.88446581c-4	4.07767094e-5	2.87623854e-2	3.16901369e-5	6.63511160e-11	1.34449276e-15	4			
Data:	7 91834962e-4	3_90825188e=5	2 96701506-2	3 20926932#=5	6 80475242e=11	1_41412130e=15				
No input f	file or directory selected.									

15) The tabular output in this format can be directly copied and pasted into a spreadsheet program to make graphs.

